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On the Relation Between Modes in Rectangular,

Elliptical, and Parabolic Waveguides and

a Mode-Classifying System

TOVE LARSEN

Abstract—The class of waveguides with rectangular, elliptical,

and parabolic cross sections and their transition shapes has been in-
vestigated. The transition shapes have been described by hyperellip-
tic functions. By a numericsJ procedure based on the finite-element
method, the cutoff wavelength and the mode patterns of 12 of the
lowest-order TM modes and 14 of the lowest-order TE modes of this
class have been found. On the basis of the investigation, a mode-

classifying system for arbitrary waveguide cross sections is sug-
gested.

1, INTRODUCTION

I

T IS THE PURPOSE of this paper to describe the

correspondence between the modes of rectangular,

elliptical, and parabolic waveguides and, based on

this, to suggest a system for classifying modes in wave-

guides of arbitrary shape. The need for such a classifying

system has become of increasing interest with the nu-

merical methods now available for investigating wave-

guides of arbitrary shape. It is further emphasized by

the fact that the same waveguide mode has different

names in the various classical waveguide types, the cross

sections of which belong to separable coordinate sys-

tems. The modes of these guides are each named accord-

ing to their corresponding coordinate system.

The idea used in defining the classifying system is

that any mode in an arbitrary waveguide corresponds

to a certain mode in a standard system, and that it

should carry the name of this standard mode and be

recognized by the pattern of this standard mode. As

standard reference is used, the most well-known and

easiest handled waveguide system, the rectangular, in

which it is very easy to find the mode patterns for as

many high-order modes as wanted.

Although the waveguide cross sections investigated

here belong to a certain class (those which are oblong,

convex, and have two lines of symmetry only, Fig. 1),

the suggested classifying system is believed to be ap-

plicable to other cross sections, too. However, before all

possible cross sections can be included in the system,

more investigations are needed. This is especially the

case for cross sections with more lines of symmetry (de-

generate modes) and for complicated concave cross sec-

tions, which in certain cases may tend to split up the

mode patterns into more and almost independent areas.
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Fig. 1. Hyperelliptic waveguide cross sections
mvestigated in the paper.

As an example of the applicability of the suggested

system, Section VII shows how the system applies to a

waveguide whose cross section has no lines of symmetry.

The investigation is mainly numerical and no rigorous

mathematics have been included, except the results for

special cases of waveguides with cross sections described

by a separable coordinate system.

II. METHOD OF APPROACH

One of the main ideas of the study described here is to

follow the variation of the individual modes when the

waveguide cross section is changed gradually in some

way between the rectangular, elliptical, iind parabolic

shapes. In order to describe the transition shapes with

few parameters, the so-called hyperelliptic functions are

chosen. These functions are an extension of the super-

elliptic functions, which were first appliedl for architec-

tural purposes, but also have been introduced in electro-

magnetic [1].

A superelliptic cross section is described with refer-

ence to Fig. 1 by

14n+l Yln—— 1 (1)
an

~n =

where n may take any value. By means of the three

parameters a, b, and n, this curve may be changed con-

tinuously between any circle, ellipse, and rectangle. For

a = b and n = 2.0, a circle is obtained; for a #b and

n = 2.0, an ellipse is obtained; and for a #b and n+ co, a

rectangle is obtained.

In the hyperelliptic cross section, the exponents of the
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two terms containing x and y are allowed to be unequal:

(2)

For P = Q = 2.0, (2) describes an ellipse. When P = 2.0
and Q = 1.0, it describes the cross section of a parabolic

waveguide. When Q is changed gradually from 2.0 to

1.0, the cross section is changed gradually from the

elliptic to the parabolic.

The correspondence between the parameters P and Q

and the waveguide cross section described by (2) is

shown in Fig. 1. These waveguide cross sections have

been investigated numerically by a computer program

constructed by Pontoppidan [2].

In order to include the parabolic waveguide in the

investigation, it has been chosen to restrict the cross sec-

tions investigated numerically to those having a ratio

b/a = 0.5 between the dimensions b and a in the sym-

metry planes. Twelve of the lowest-order TM modes

and fourteen of the lowest-order TE modes have been

found.

It is interesting to note that some of the modes in the

elliptical and parabolic waveguides, which could be pre-

dicted to exist by the method of gradually changing the

rectangular cross section to the elliptical and parabolic,

were not found by exact theories until recently. The

elliptical ones were found by Kretzschmar [3] in 1970

and the parabolic ones by Zagrodzinski [4] in 1966.

In the folIowing, it will first be shown how the mode

patterns, which are the important tools in the suggested

mode-classifying system, will be displayed. Next, the

exact results known from the literature about the classi-

cal waveguide types will be mentioned, and, finally,

these results will be shown in connection with the new

numerical results for the hyperelliptic waveguides of

which they are special cases.

II 1. ILLUSTRATING WAVEGUIDE MODES

The usual method to illustrate the configuration of

the various wave’guide modes is to plot both electric

and magnetic field lines in a typical cross section. I n

order to simplify the recognition of the various mode

patterns, only one set of field lines will be used here. For

TE modes the electric field line patterns will be used and

for TM modes the magnetic field line patterns will be

used.

A simple way of finding these field line patterns is to

plot the contour lines of the generating wave functions,

as shown, e.g., by Pontoppidan [2]. The generating

wave function is the longitudinal H field of the guide

for TE modes and the longitudinal E field of the guide

for TM modes. The field patterns shown in this paper

are plotted by a computer using a contour-plotting sub-

routine [5] for the generating functions. All mode pat-

terns are normalized to have a maximum field strength

of unity.

(a)

(b)

(c)

Fig. 2. Illustration of a TM mode (as an example, the TM32 mode
of a rectangular waveguide is shown). (a) Perspective view of the
generating function equal to the longitudinal E field. (b) Mag-
netic field line pattern equal to the contour lines of the gen-
erating function. (c) Sketch of the mode.

To illustrate the principle of this procedure, perspec-

tive drawings of the generating function and the corre-

sponding system of contour curves, which represent the

field pattern for a TM and aTE mode, respectively, are

shown in Figs. 2 and 3. The dashed lines are the contour

lines corresponding to’ a field strength of zero. At the

bottom of each of the figures a simple and less-informa-

tive sketch of the modes is shown, where hatched areas

correspond to a positive value of the generating func-

tions and blank areas to a negative one. This signal-flag

way of designating waveguide modes appears to be quite

practical in many cases, as illustrated in what follows.

IV. ELLIPTICAL WAVEGUIDES

Waveguides of elliptical cross section were first treated

in 1936 in the classical paper by Chu [6]. Several in-

vestigations have followed this; however, not until the

recent investigations made by Kretzschmar [3], all of

the lowest-order modes of these waveguides have been

found. This course of development is due to the fact

that the M athieu functions describing the field in ellip-

tical waveguides are difficult to compute numerically

because of a rather slow convergence of the series repre-

senting the functions. Kretzschmar has, by using a com-

puter program based on a Bessel-functions product
,’



LARsEN: RELATION BETWEEN MODES IN WAVEGUIDES AND A MODE-CLASSIFYING SYSTEM 381

(a)

I
I

I I
I 1

I I I

1- 1----- ----------k ---------- i-----l
i
I

i i
I I

(b)

(c)

Fig. 3. Illustration ofa TE mode (asanexamPle, the TE,Z mode of
a rectangular waveguide is shown). (a) Perspective view of the
generating function equal tothelongitudinal lffield. (b) Electric
field line pattern equal to the contour lines of the generating
function. (c) Sketch of the mode.

series for the Mathieu functions, found the 19 lowest-

order modes (11 TE modes and 8 TM modes) of an

elliptical waveguide. However, he does not show the

mode patterns, and only a few of these have been pub-

lished previously.

Of the previous papers on elliptical waveguides, refer-

ence should be made to those by Piefke [7] and by

Krank [8], from which the mode names of the elliptical

guide in Figs. 6 and 7 and the mode patterns of the

elliptical guide in Fig. 9 were found.

V. PARABOLIC WAVEGUIDES

The first investigation of parabolic waveguides was

published in 1942 by Spence and Wells [9], and several

papers on the subject have appeared since then. How-

ever, not until 1966 (published 1968) did Zagrodzinski

[4] find the parameter values yielding all the lowest-

order modes of the parabolic waveguides. In earlier work,

only the modes, which correspond to the zero order of

the parabolic cylinder functions, were found, whereas
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Zagrodzinski found by graphical means, using Miller’s
Fig. 5. Normalized cutoff wavelength of TE modes in waveguides

with h yperelliptic cross section; ~/a= 0.5.
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Fig.6. Table of corresponding mode designations for TM modes in rectangular, elliptical, and
parabolic waveguides. The numerical values of the normalized cutoff wavelength arevahd for
b/a=O.5.
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b/a=O.5.
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tables [10 ] of parabolic cylinder functions, the cutoff

frequencies of the 143 lowest-order modes in a parabolic

waveguide. The present author has supplemented

Zagrodzinski’s results by making a program for comput-

ing the odd and even parabolic cylinder functions [11 ],

and used this in connection with the previously men-

tioned contour-plotting procedure to find the mode pat-

terns of the parabolic waveguide.

VI. MODE SYSTEM BY NUMERICAL SOLUTION

The cutoff wavelength of the transition shapes be-

tween the rectangular, elliptical, and parabolic wave-

guides described by the hyperelliptic functions have

been found approximately by an iterative finite-element

program constructed by Pontoppidan [2]. The results

are shown in Fig. 4 for the TM modes and in Fig. 5 for

the TE modes. The cutoff wavelengths are normalized

with the major axis 2a of the cross sections. The mode

curves have been marked with the rr ode indices of the

corresponding rectangular waveguide mode and with

the signal-flag sketches of the same modes.

Further information related to the curves of Figs. 4

and 5 are given in the table of Fig. 6 for the TM modes

and in the table of Fig. 7 for the TE modes. In the tables

are listed the same signal-flag designation as was used

for the curves, and, furthermore, the normal mode clas-

sifications of the classical waveguide cross sections have

been given.

The corresponding mode designations of the rectan-

gular and the elliptical waveguides are valid for all

values of the ratio b/a. The names of the parabolic

waveguide modes are only defined for b/a= 0.5. The

numerical values in the tables of the normalized cutoff

wavelengths are valid for b/a= 0.5.
In order to show how much the mode patterns change

for the relatively similar cross sections treated here,

examples are shown in Fig. 8 for the corresponding pat-

terns of the TM41 mode and the TE.u mode of the three

classical waveguide types. These modes are easy to rec-

ognize. In Fig. 9 examples are shown, with the aid of

the signal-flag technique, for the corresponding patterns

of the TMIs and TEla modes of the three waveguide

types. These modes are more difficult to recognize; how-

ever, with a little experience it should be possible, and

there seems to be an advantage in the signal-flag tech-

nique when more complicated modes are to be identified.

VI 1. MODE-CLASSIFYING SYSTEM

In the preceding section it was shown how there is

a unique correspondence between the modes of para-

bolic, elliptical, and rectangular waveguides. The mode-

classification system to be suggested here is based on

the anticipation that a similar correspondence exists

between modes of waveguides with other cross sections

than those investigzzted here.

TM41

TE21

~,
............................m E%EI;......-......j...-..

)1

Fig. 8. Example of corresponding modes in parabolic, elliptical,
and rectangular waveguides.

TM13

TE12

Fig. 9. Example of corresponding modes in parabolic, elliptic.d,
and rectangular waveguides.

In accordance with this, it is suggested to classify

modes in waveguides by the name and lpattern of the

corresponding mode in a rectangular waveguide. By cor-

responding mode it is meant that mode of a rectangular

waveguide into which the actual mode transfers when

the actual waveguide cross section gradually is changed

to a rectangular one in a simple way.

For waveguides belonging to the class defined in the

Introduction (Fig. 1), there are no problems in finding

a simple way of transition, as the axes of the symmetry

and the way of being oblong should be the same for the

cross section investigated and for the standard rectan-

gular waveguide.

For other cross sections there might be some doubt

as to how the orientation of the waveguide investigated

should be in relation to the standard guide. However,

this ambiguity can be solved by finding the way into

which the lowest-order TE mode, TE1o, or the second

lowest-order TM mode, TMZI, divides the cross section.

The contour lines of these modes, which correspond to

the zero field value, should be oriented in the same way

as the corresponding lines of the standard pattern. As

an example of this procedure, Fig. 10 shows the six

lowest-order TM modes of an oblong waveguide cross

section without any lines of symmetry. The cross sec-

tion, which was investigated by the program of Pontop-

pidaq [2], consists of a semicircle and a right isosceles

triangle. In the figure, a corresponding set of standard
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Fig. 10.
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Example of classification of TM modes in a waveguide with
unsymmetrical cross section. A corresponding set of rectangular
guide patterns is shown with dashed lines.
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rectangula rwaveguicl es isshown. Themocle name shave

easily been found as indicated. The standard set shown

is not the only one that could be used (another example

is shown dotted at the 21 mode). However, the mode

names are independent of the choice of standard set, if

it is chosen according to the rules given above.

When a waveguide cross section has more than two

lines of symmetry like the equilateral triangle and the

other equilateral polygons of which the circle is a limit-

ing case, several degenerate modes may exist, and it is

not possible to uniquely decide which one is the TEIO or

TMZI mode. Furthermore, new mode patterns, which do

not exist in the rectangular standard system, may arise

by a linear combination of the degenerate modes. The

present system of classification does not consider modes

of this kind.

VII 1. CONCLUSION

The correspondence between modes in rectangular,

elliptical, and parabolic waveguides have been investi-

gated numerically. Based on the results, a mode- .

classifying system for arbitrary waveguides has been

suggested. The system has, by examples, been shown to

be applicable for lower-order modes in waveguides with

not too complicated cross section. The patterns arising

from a linear combination of degenerate modes in special

cross sections have not been included in the system.
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