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On the Relation Between Modes in Rectangular,
Elliptical, and Parabolic Waveguides and
a Mode-Classifying System

TOVE LARSEN

Abstract—The class of waveguides with rectangular, elliptical,
and parabolic cross sections and their transition shapes has been in-
vestigated. The transition shapes have been described by hyperellip-
tic functions. By a numerical procedure based on the finite-element
method, the cutoff wavelength and the mode patterns of 12 of the
lowest-order TM modes and 14 of the lowest-order TE modes of this
class have been found. On the basis of the investigation, a mode-
classifying system for arbitrary waveguide cross sections is sug-
gested.

]. INTRODUCTION

T IS THE PURPOSE of this paper to describe the
:I[ correspondence between the modes of rectangular,

elliptical, and parabolic waveguides and, based on
this, to suggest a system for classifying modes in wave-
guides of arbitrary shape. The need for such a classifying
system has become of increasing interest with the nu-
merical methods now available for investigating wave-
guides of arbitrary shape. It is further emphasized by
the fact that the same waveguide mode has different
names in the various classical waveguide types, the cross
sections of which belong to separable coordinate sys-
tems. The modes of these guides are each named accord-
ing to their corresponding coordinate system.

The idea used in defining the classifying system is
that any mode in an arbitrary waveguide corresponds
to a certain mode in a standard system, and that it
should carry the name of this standard mode and be
recognized by the pattern of this standard mode. As
standard reference is used, the most well-known and
easiest handled waveguide system, the rectangular, in
which it is very easy to find the mode patterns for as
many high-order modes as wanted.

Although the waveguide cross sections investigated
here belong to a certain class (those which are oblong,
convex, and have two lines of symmetry only, Fig. 1),
the suggested classifying system is believed to be ap-
plicable to other cross sections, too. However, before all

_ possible cross sections can be included in the system,
more investigations are needed. This is especially the
case for cross sections with more lines of symmetry (de-
generate modes) and for complicated concave cross sec-
tions, which in certain cases may tend to split up the
mode patterns into more and almost independent areas.
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Fig. 1. Hyperelliptic waveguide cross sections
investigated in the paper.

As an example of the applicability of the suggested
system, Section VII shows how the system applies to a
waveguide whose cross section has no lines of symmetry.

The investigation is mainly numerical and no rigorous
mathematics have been included, except the results for
special cases of waveguides with cross sections described
by a separable coordinate system.

I1I. METHOD OF APPROACH

One of the main ideas of the study described here is to
follow the variation of the individual modes when the
waveguide cross section is changed gradually in some
way between the rectangular, elliptical, and parabolic
shapes. In order to describe the transition shapes with
few parameters, the so-called hyperelliptic functions are
chosen. These functions are an extension of the super-
elliptic functions, which were first applied for architec-
tural purposes, but also have been introduced in electro-
magnetics [1].

A superelliptic cross section is described with refer-
ence to Fig. 1 by
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where # may take any value. By means of the three
parameters a, b, and #, this curve may be changed con-
tinuously between any circle, ellipse, and rectangle. For
a=b and #=2.0, a circle is obtained; for a#b and
n=2.0, an ellipse is obtained; and for ¢ #b and n— =, a
rectangle is obtained.

In the hyperelliptic cross section, the exponents of the
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two terms containing x and y are allowed to be unequal:

Els ~
St =L 2)

For P=0=2.0, (2) describes an ellipse. When P=2.0
and Q=1.0, it describes the cross section of a parabolic
waveguide. When Q is changed gradually from 2.0 to
1.0, the cross section is changed gradually from the
elliptic to the parabolic.

The correspondence between the parameters P and Q
and the waveguide cross section described by (2) is
shown in Fig. 1. These waveguide cross sections have
been investigated numerically by a computer program
constructed by Pontoppidan [2].

In order to include the parabolic waveguide in the
investigation, it has been chosen to restrict the cross sec-
tions investigated numerically to those having a ratio
b/a=0.5 between the dimensions & and ¢ in the sym-
metry planes. Twelve of the lowest-order TM modes
and fourteen of the lowest-order TE modes have been
found.

It is interesting to note that some of the modes in the
elliptical and parabolic waveguides, which could be pre-
dicted to exist by the method of gradually changing the
rectangular cross section to the elliptical and parabolic,
were not found by exact theories until recently. The
elliptical ones were found by Kretzschmar [3] in 1970
and the parabolic ones by Zagrodzinski [4] in 1966.

In the following, it will first be shown how the mode
patterns, which are the important tools in the suggested
mode-classifying system, will be displayed. Next, the
exact results known from the literature about the classi-
cal waveguide types will be mentioned, and, finally,
these results will be shown in connection with the new
numerical results for the hyperelliptic waveguides of
which they are special cases.

II1. ILLUSTRATING WAVEGUIDE MODES

The usual method to illustrate the configuration of
the various waveguide modes is to plot both electric
and magnetic field lines in a typical cross section. In
order to simplify the recognition of the various mode
patterns, only one set of field lines will be used here. For
TE modes the electric field line patterns will be used and
for TM modes the magnetic field line patterns will be
used.

A simple way of finding these field line patterns is to
plot the contour lines of the generating wave functions,
as shown, e.g., by Pontoppidan [2]. The generating
wave function is the longitudinal H field of the guide
for TE modes and the longitudinal E field of the guide
for TM modes. The field patterns shown in this paper
are plotted by a computer using a contour-plotting sub-
routine [5] for the generating functions. All mode pat-
terns are normalized to have a maximum field strength
of unity.

1IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JUNE 1972

R O
|

I S

Fig. 2. Ilustration of a TM mode (as an example, the TMg: mode
of a rectangular waveguide is shown). (a) Perspective view of the
generating function equal to the longitudinal E field. (b) Mag-
netic field line pattern equal to the contour lines of the gen-
erating function. (¢) Sketch of the mode.

To illustrate the principle of this procedure, perspec-
tive drawings of the generating function and the corre-
sponding system of contour curves, which represent the
field pattern for a TM and a TE mode, respectively, are
shown in Figs. 2 and 3. The dashed lines are the contour
lines corresponding to’ a field strength of zero. At the
bottom of each of the figures a simple and less-informa-
tive sketch of the modes is shown, where hatched areas
correspond to a positive value of the generating func-
tions and blank areas to a negative one. This signal-flag
way of designating waveguide modes appears to be quite
practical in many cases, as illustrated in what follows.

IV. ErLipTicAL WAVEGUIDES

Waveguides of elliptical cross section were first treated
in 1936 in the classical paper by Chu [6]. Several in-
vestigations have followed this; however, not until the
recent investigations made by Kretzschmar [3], all of
the lowest-order modes of these waveguides have been
found. This course of development is due to the fact
that the Mathieu functions describing the field in ellip-
tical waveguides are difficult to compute numerically
because of a rather slow convergence of the series repre-
senting the functions. Kretzschmar has, by using a com-
puter program based on a Bessel-functions product
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Fig. 3. [Illustration of a TE mode (as an example, the TEz mode of
a rectangular waveguide is shown). (a) Perspective view of the
generating function equal to the longitudinal A field. (b) Electric
field line pattern equal to the contour lines of the. generating
function. (c) Sketch of the mode.

series for the Mathieu functions, found the 19 lowest-
order modes (11 TE modes and 8 TM modes) of an
elliptical waveguide. However, he does not show the
mode patterns, and only a few of these have been pub-
lished previously. ‘

Of the previous papers on elliptical waveguides, refer-
ence should be made to those by Piefke [7] and by
Krank [8], from which the mode names of the elliptical
guide in Figs. 6 and 7 and the mode patterns of the
elliptical guide in Fig. 9 were found.

V. ParaBoOLIC WAVEGUIDES

The first investigation of parabolic waveguides was
published in 1942 by Spence and Wells [9], and several
papers on the subject have appeared since then. How-
ever, not until 1966 (published 1968) did Zagrodzinski
[4] find the parameter values yielding all the lowest-
order modes of the parabolic waveguides. In earlier work,
only the modes, which correspond to the zero order of
the parabolic cylinder functions, were found, whereas

the more complicated modes, which correspond to non- "

zero orders, were mentioned, but not investigated.
Zagrodzinski found by graphical means, using Miller's
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Fig. 4. Normalized cutoff wavelength of TM modes in waveguides
with hyperelliptic cross section; b/a =0.5.
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Fig. 5. Normalized cutoff wavelength of TE modes in waveguides
with hyperelliptic cross section; b/a =0.5.
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Mode Rectangular Elliptical Parabolic
pattern Name WD Name A /28 Hame X [2a
- ™, 0,894 ™ o 0.831 Tiog 0,785
.j ™, 0.707 ™ 0.627 ™y 0.563
l:l Ty, 0.555 ™ o0 0.496 Ty, = T, 0.4k
5 T, 0.485 Ty 0.458 T, + Ty, 0142
[l] TH, 1 0.hu7 TH, 3y 0.407 Ty, = THyq 0,363
E T, 0.147 I 0.394 Ty, + THy 4 0.363
E;ﬂ Ty, 0.400 T3, 0.343 T, + Ty, 0.312
[[I Thigy 0.371 LI 0.31:1;‘ T, - T 0.312
E ™, 0.354 T, 0.302 gy + T 0.270
= T, 0.329 ™ oo 0.316 ™, 0.306
I]]] Tig, 0.316 i s 04297 Ty, - T 0.270
E Thyq 0.316 Tz-ac 12 0.28k Ty g 0.266

Fig. 6. Table of corresponding mode designations for TM modes in rectangular, elliptical, and
parabolic waveguides. The numerical values of the normalized cutoff wavelength are valid for

b/a=0.5.

Hode Rectangular Elliptical Parabolic
pattern Hame x /28 Tame A /28 Neme WS
-j T 2.000 TE 1.676 TE 1,481
I:I' ey 1.000 . TE 0.919 TE,, - TEy, 0.856
5 TEyy 1.000 ol 0.888 TE,, + TE, 0.856
E TE [0.89k TEg,p 0.677 TE, + By 0.609
II TEy, 0.667 T 5, 0.637 TEy, - TE,, 0.609
E TE,| 0.707 TE o, 0.538 TE,, + TEq, 0.7k
I:[I TI,g 0.500 TE, 0.489 TE, - TEq, 0.7k
: TEyp 0,500 TE o) 0.465 TE,, 0,449
E TEy, 0.555 T8 ), 0.4k3 TEg) + TEg 0.389
E TE, , 0,485 TE g 0.397 TEqq 0.367

‘ [I] ‘ T 0.400 TBygy 0.399 TEgy = TEp5 0.389
w TE, | 0,147 TE 51 0.375 B, + TEge 0.329
_E TE,, 04T TE 0 0.347 TE,, - TE,, 0.310
[[I] TE 0.333 B g, 0.337 TEGOI - TEyg 0.329

Fig. 7. Table of corresponding mode designations for TE modes in rectangular, elliptical, and
p7rabolic waveguides. The numerical values of the normalized cutoff wavelength are valid for
b/a=0.35.
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tables [10] of parabolic cylinder functions, the cutoff
frequencies of the 143 lowest-order modes in a parabolic
waveguide. The present author has supplemented
Zagrodzinski’s results by making a program for comput-
ing the odd and even parabolic cylinder functions [11],
and used this in connection with the previously men-
tioned contour-plotting procedure to find the mode pat-
terns of the parabolic waveguide.

VI. MobpE SysTEM BY NUMERICAL SOLUTION

The cutoff wavelength of the transition shapes be-
tween the rectangular, elliptical, and parabolic wave-
guides described by the hyperelliptic functions have
been found approximately by an iterative finite-element
program constructed by Pontoppidan [2]. The results
are shown in Fig. 4 for the TM modes and in Fig. 5 for
the TE modes. The cutoff wavelengths are normalized
with the major axis 2a of the cross sections. The mode
curves have been marked with the m ode indices of the
corresponding rectangular waveguide mode and with
the signal-flag sketches of the same modes.

Further information related to the curves of Figs. 4
and 5 are given in the table of Fig. 6 for the TM modes
and in the table of Fig. 7 for the TE modes. In the tables
are listed the same signal-flag designation as was used
for the curves, and, furthermore, the normal mode clas-
sifications of the classical waveguide cross sections have
been given.

The corresponding mode designations of the rectan-
gular and the elliptical waveguides are valid for all
values of the ratio &/a. The names of the parabolic
waveguide modes are only defined for 5/a=0.5. The
numerical values in the tables of the normalized cutoff
wavelengths are valid for 6/a¢=0.5.

In order to show how much the mode patterns change
for the relatively similar cross sections treated here,
examples are shown in Fig. 8 for the corresponding pat-
terns of the TMy mode and the TEx mode of the three
classical waveguide types. These modes are easy to rec-
ognize. In Fig. 9 examples are shown, with the aid of

the signal-flag technique, for the corresponding patterns.

of the TM;; and TE;; modes of the three waveguide
types. These modes are more difficult to recognize; how-
ever, with a little experience it should be possible, and
there seems to be an advantage in the signal-flag tech-
nique when more complicated modes are to be identified.

VII. Mope-CLASSIFYING SYSTEM

In the preceding section it was shown how there is
a unique correspondence between the modes of para-
bolic, elliptical, and rectangular waveguides. The mode-
classification system to be suggested here is based on
the anticipation that a similar correspondence exists
between modes of waveguides with other cross sections
than those investigated here.
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Fig. 8. Example of corresponding modes in parabolic, elliptical,
and rectangular waveguides. :
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Fig. 9. Example of corresponding modes in parabolic, elliptical,
and rectangular waveguides.

In accordance with this, it is suggested to classify
modes in waveguides by the name and pattern of the

corresponding mode in a rectangular waveguide. By cor-

responding mode it is meant that mode of a rectangular
waveguide into which the actual mode transfers when
the actual waveguide cross section gradually is changed
to a rectangular one in a simple way.

For waveguides belonging to the class defined in the
Introduction (Fig. 1), there are no problems in finding
a simple way of transition, as the axes of the symmetry
and the way of being oblong should be the same for the
cross-section investigated and for the standard rectan-
gular waveguide.

For other cross sections there might be some doubt
as to how the orientation of the waveguide investigated
should be in relation to the standard guide. However,
this ambiguity can be solved by finding the way into
which the lowest-order TE mode, TEy, or the second
lowest-order TM mode, TMy;, divides the cross section.
The contour lines of these modes, which correspond to
the zero field value, should be oriented in the same way
as the corresponding lines of the standard pattern. As
an example of this procedure, Fig. 10 shows the six
lowest-order TM modes of an oblong waveguide cross
section without any lines of symmetry. The cross sec-
tion, which was investigated by the program of Pontop-
pidan [2], consists of a semicircle and a right isosceles
triangle. In the figure, a corresponding set of standard
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31

Fig. 10. Example of classification of TM modes in a waveguide with
unsymmetrical cross section. A corresponding set of rectangular
guide patterns is shown with dashed lines.

rectangular waveguides is shown. The mode names have
easily been found as indicated. The standard set shown
is not the only one that could be used (another example
is shown dotted at the 21 mode). However, the mode
names are independent of the choice of standard set, if
it is chosen according to the rules given above.

When a waveguide cross section has more than two
lines of symmetry like the equilateral triangle and the
other equilateral polygons of which the circle is a limit-
ing case, several degenerate modes may exist, and it is
not possible to uniquely decide which one is the TE or
TM;y; mode. Furthermore, new mode patterns, which do
not exist in the rectangular standard system, may arise
by a linear combination of the degenerate modes. The

present system of classification does not consider modes
of this kind.

VIII. CoNcLuUsION

The correspondence between modes in rectangular,
elliptical, and parabolic waveguides have been investi-
gated numerically. Based on the results, a mode-
classifying system for arbitrary waveguides has been
suggested. The system has, by examples, been shown to
be applicable for lower-order modes in waveguides with
not too complicated cross section. The patterns arising
from a linear combination of degenerate modes in special
cross sections have not been included in the system.
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